Elementary Functions of Complex Numbers
Trigonometry and Hyperbolic Functions in
Complex Numbers
Trigonometry Functions:
`e^(ix) = (\cos x + i\sin x)`
and `e^(-ix) = (\cos x - i\sin x)` (by Euler’s Formula)
Adding & subtracting above, we have
`\cos x =\frac{e^(ix) + e^(-ix)}{2}` and `\sin x =\frac{e^(ix) - e^(-ix)}{2i}`
`\implies` `\cos z =\frac{e^(iz) + e^(-iz)}{2}` , `\sin z =\frac{e^(iz) - e^(-iz)}{2i}`
Furthermore,
`\tan z = \frac{\sin z}{\cosz} , \cot z = \frac{\cos z}{\sinz}`
`\sec z = \frac{1}{\cosz} , \csec z = \frac{1}{\sinz}`
Note: Since `e^z` is entire function, therefore π πππ§ & πππ π§ both are entire functions.
Hyperbolic Functions
For any complex number π§ = π₯ + π¦i
`\sinh z =\frac{e^z - e^(-z)}{2}` and `\cosh z =\frac{e^z + e^(-z)}{2}`
Relation between Complex Trigonometric and Hyperbolic Functions
`\sin iz = i \sin hz , \cos iz = \coshz`
`\sinhiz = i \sinz , \coshiz = \cosz`
Examples:
Example 7: Express cosh (3 + 4π) in the form π’ + ππ£.
Solution:
πππ β(3 + 4π) = πππ π(3 + 4π)
= πππ (−4 + 3π)
= πππ (−4) πππ (3π) − π ππ(−4) π ππ (3π)
= (−0.6536)(10.067) − (0.7568). ππ ππβ(3)
= (−0.6536)(10.067) − (0.7568). (10.0179)π
πππ β(3 + 4π)
= −6.5797 − 7.5815π
0 Comments